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Abstract

In this paper, we present neural network clustering by deterministic annealing as
a powerful strategy for self-organized segmentation of biomedical image time-series
data identifying groups of pixels sharing common properties of local signal dynamics.
After introducing the theoretical concept of minimal free energy vector quantization
and related clustering techniques, we discuss its potential to serve as a multi-purpose
computer vision strategy to image time-series analysis and visualization for many
fields of medicine ranging from biomedical basic research to clinical assessment of
patient data. In particular, we present applications to (i) functional MRI data
analysis for human brain mapping, (ii) dynamic contrast-enhanced perfusion MRI
for the diagnosis of cerebrovascular disease, and (iii) magnetic resonance mammog-
raphy for the analysis of suspicious lesions in patients with breast cancer. This
wide scope of completely different medical applications illustrates the flexibility and
conceptual power of neural network vector quantization in this context. Although
there are obvious methodological similarities, each application requires specific care-
ful consideration w.r.t. data preprocessing, postprocessing and interpretation. This
challenge can only be managed by close interdisciplinary cooperation of medical doc-
tors, engineers, and computer scientists. Hence, this field of research can serve as an
example for lively cross-fertilization between computer vision and related research.
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1 Introduction

In recent years a wide scope of advanced non-invasive medical imaging techniques
such as positron emission tomography (PET), dynamic computer tomography (CT),
and magnetic resonance imaging (MRI) has been introduced into biomedical prac-
tice.

Beyond the plain imaging of morphological structure, the analysis of biological
function increasingly moves into the focus of attention. Thus, the analysis and visu-
alization of medical image time-series data is a challenge with growing importance
for both basic research and clinical application.

The basic principle of dynamic biomedical imaging can be summarized as fol-
lows: after administration of some contrast agent, one can observe, as a function
of time, contrast agent-induced dynamic changes with regard to the imaging prop-
erties of the examined tissue. These changes can be recorded by a series of rapid
subsequent images. The term ‘contrast agent’ should be considered very general
here, as it comprises both exogenous and endogenous effects: It ranges from exoge-
nous intravenous administration of iodinated or paramagnetic contrast media by a
medical doctor to the concentration shifts of endogenous substances that may be
induced by functional changes in biological tissue.

For each pixel, we obtain a signal time-series that may be interpreted in the light
of the experimental conditions. There are two approaches to the analysis of dynamic
biomedical image time-series data: The first one is a model-driven approach that
tries to interprete the time-series data as a consequence of dynamically changing
experimental input parameters, given a specific model that defines the pattern of
interaction between underlying physiological processes and the observed signal dy-
namics. This “supervised” cause and effect concept is the mainstream approach to
the interpretation of biomedical image time-series data. Important examples for the
imaging procedures discussed in this paper are:

(i) Correlation-based methods of functional MRI (fMRI) data analysis (e.g. [3])
of the human brain compare gray levels and stimulus protocol at each time
frame of image acquisition in the fMRI experiment. Thus, they evaluate the
similarity of the signal time-series at each pixel (Pixel Time Course, PTC) and
the protocol time-series employing an appropriate distance measure like cross-
correlation or Euclidean distance in order to define regions of ‘activation’. The
underlying conceptual model is based on the so-called BOLD- (blood oxygen
level dependent) contrast that was first described by [40]. The physical basis
of this BOLD contrast is given by the different magnetic properties of de-
oxyhemoglobin (DeoxHb, paramagnetic) and oxyhemoglobin (OxHb, diamag-
netic) that lead to differences in signal intensity in appropriately susceptibility
weighted MRI sequences depending on the concentration of deoxyhemoglobin.
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The physiological nature of the complex temporo-spatial pattern of the BOLD
response to sensory, motor, or cognitive brain activation, however, is only par-
tially understood and currently subject to thorough investigation. In principle,
the BOLD signal shows a regionally varying tri-phasic response: initial signal
decrease, delayed signal increase for the duration of the stimulus followed by a
post-stimulation decrease. For standard fMRI experiments, the signal increase
phase is exploited using long time-series during the resting and activation state
to account for the typically low contrast-to-noise ratio. The main objective of
fMRI data processing is to segment active from non-active brain regions by
analyzing the dynamics of these time-series.

In dynamic contrast-material enhanced MRI studies, such as dynamic cere-
bral perfusion MRI or MRI mammography, the contrast-agent uptake can be
studied as a function of time. From the resulting tissue-concentration-time
curves, perfusion parameters can be computed (e.g. [41]). The main objective
of dynamic MRI is to separate abnormal from normal contrast enhancement
reflecting disturbed hemodynamics or pathological vascularization.

The model-based, supervised data analysis based on the underlying knowledge of
experimental conditions and model assumptions, may be difficult or even impossible.
For the examples sketched above, we have to face the following limitations:

(i)

Supervised techniques for fMRI data analysis imply presumptive knowledge
of expected stimulus-response patterns. Thus, they may sometimes fail in
unveiling complex signal changes that exceed the scope of the model, thus
discarding valuable information about the fMRI signal. Moreover, in fMRI
studies of spontaneously occurring mental processes like hallucinations, sleep,
or epileptic fits, the exact time course of the stimulus may not even be known.
This also holds for the analysis of spontaneous brain activity in resting state
fMRI.

Exact blood flow quantification based on the indicator dilution theory for
nondiffusible intravascular tracers (e.g. [41]) is a difficult issue which cannot be
performed on a routine clinical basis. Under pathological conditions, however,
the computation of perfusion parameters is even impossible, as the conditions
for the applicability of the indicator dilution theory may be violated.

In the context of these limitations, unsupervised or solely data-driven techniques
may offer a powerful alternative strategy for image time-series analysis. A simple
approach is to use appropriate transformations, i.e. to apply mappings that help
to unveil inherent properties of the data. Principal Component Analysis (PCA) for
example, performs a basis transformation by diagonalization of the covariance ma-
trix and rotating the coordinate system according to the direction of the resulting
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eigenvectors. The corresponding (squared) eigenvalues represent the variances of the
data along these principal components. In fMRI data analysis, for example, usually
some of the eigenvectors reflect the time course of the stimulus protocol. Subse-
quently, a rough preliminary screening for pixels representing areas of ‘activation’
may be performed by computing maps of the coefficients of each PTC with respect
to these principal components. Recently, an additional component decomposition
method has been introduced into fMRI data processing: Independent Component
Analysis (ICA) tries to identify how observed data can be generated by a process of
linearly mixing statistically independent basic signals [30], [6].

A different approach to unsupervised image time-series data analysis is clustering
or Vector Quantization (VQ). In this paper, we use the terms VQ and clustering
interchangeably. V(Q methods have been proposed for a wide scope of biomedical
signal processing problems (see, e.g. [51]). VQ procedures map a data space onto a
finite set of prototypical feature vectors, a so-called codebook. Examples of this class
of algorithms are elementary VQ methods like LBG [35] and k-means clustering [1],
[19], [23] or more refined, ‘soft-competing’ algorithms like Kohonen’s self-organizing
maps (SOMs) [33], minimal free energy VQ [45], [15], [14], [12], and the ‘neural gas’
algorithm [36].

Interestingly, there are different approaches to the latter class of VQ algorithms:
a neurobiology-oriented approach based on algorithms which model the development
of sensory maps [50], an alternative approach based on information theory [5], and
approaches derived from statistics and statistical mechanics [44]. The mathematical
properties of these algorithms as well as their drawbacks have been thoroughly
investigated in the literature (see, e. g. [32], [42], [21], [20], [44], [15], [16], [12], [45],
[37)).

In the field of fMRI data analysis, various clustering methods have been intro-
duced by several authors [18], [47], [48], [17], [26], [25] [22], [27], [10], [39], [4] [53],
[64]. For VQ analysis, the PTCs of gray levels at each pixel obtained from biomedical
time-series data can be interpreted as feature vectors sampled from a multidimen-
sional probability distribution. V(Q methods try to identify clusters of similar PTCs
within this feature space. The corresponding Codebook Vectors (CVs) represent
prototypical PTCs sharing similar temporal characteristics. As a result, each PTC
can be assigned to a specific CV according to a minimal distance criterion, or, in
the case of soft-competing algorithms, be attributed to several CVs with respect to
a ‘fuzzy’ cluster membership. Accordingly, the output of VQ procedures for medical
image time-series data may be plotted as ‘hard’ or ‘soft’ cluster assignment maps.

In this paper, we present neural network clustering techniques as a multi-purpose
approach to image time-series analysis that can be applied to many fields of medicine
ranging from biomedical basic research to clinical assessment of patient data. In
particular, we will present applications to (i) fMRI data analysis for human brain
mapping, (ii) dynamic contrast-enhanced perfusion MRI for the diagnosis of cere-
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brovascular disease (iii) magnetic resonance mammography for the analysis of suspi-
cious lesions in patients with breast cancer. This wide scope of completely different
medical applications illustrates the flexibility and conceptual power of neural net-
work vector quantization. Although there are obvious methodological similarities,
each application requires specific careful consideration with regard to data prepro-
cessing, postprocessing and interpretation. This challenge can only be met by close
interdisciplinary cooperation of medical doctors, engineers, and computer scientists.
Hence, this field of research can serve as an example for lively cross-fertilization
between computer vision and related research.

2 Theory

Let n denote the number of subsequent scans in a biomedical image time-series.
Let K denote the number of pixels in each scan. The dynamics of each pixel v €
{1,..., K}, i.e. the sequence of gray levels z¥(7) over all scan acquisition time
frames 7 can be interpreted as a vector x¥ € IR" in the n-dimensional feature
space of possible PTCs. Clustering identifies N groups j, j € {1,..., N} of pixels
with similar PTCs. These groups are represented by prototypical time-series called
Codebook Vectors (CVs) w; located at the center of the corresponding clusters.

Some VQ procedures determine these cluster centers by an iterative adaptive
update according to

w;(t+1) = w;(t) + €(t) a;(x(2), W (1), k) (x(t) — w;(1)), (1)

where €(t) denotes a learning parameter, a; a so-called cooperativity function which,
in general, depends on the codebook W (t) = {w,(t)|5 € {1,...,N}}, a coopera-
tivity parameter k, and a, in general, randomly chosen feature vector x € {x”|v €
{1,...,K}}. In the context of biomedical image data analysis, one should clearly
note the difference between the time 7 of the time-series representing a specific com-
ponent, of the feature vector x” and the time ¢ which denotes the iteration step of
the VQ procedure.

It should be emphasized that not all clustering methods can be written in a se-
quential form (1) which has only been chosen here because of its intuitive simplicity.
The implementation of all the V(Q algorithms used in this paper is indeed non-
sequential, i.e. all the feature vectors x are presented in a single batch cycle. This
allows the application of well-defined optimization strategies from statistical learn-
ing theory, e.g. the Expectation Maximization (EM) algorithm [11] for parameter
estimation.

VQ algorithms can be classified according to the cooperativity function a;. One
can distinguish between so-called ‘hard clustering’ methods that assign each fea-
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ture vector x to exactly one cluster and ‘soft clustering’ methods implying the
concept of fuzzy membership of feature vectors in several clusters.

For example, a simple method for hard clustering is the algorithm proposed by
Linde, Buzo and Gray (LBG) [35]. Here, a; is calculated by the ‘winner takes all’
learning rule

aj(x(t)’ W(t)) = 5i(x),j; (2)

where i(x) is determined according to the minimal distance criterion

[l — wil| = min [|xc — wyl]. (3)

If we change a; in a way that more than one CV can take part in the update
at the same time ¢, (1) becomes a ‘winner takes most’ learning rule. The resulting
soft clustering methods can be classified according to the metric the cooperativity
function a; is based on.

If we do not use the metric of the feature space itself, but define a mapping

r:N—=YCRF j—r(3j) (4)

of the CVs onto a so-called ‘cortex model’, we obtain a scenario that may be inter-
preted with respect to a neural network model of sensory maps (e. g. [50]). Usually k&
is chosen k < N and k < n. The r(j)’s can be thought of as representing the phys-
ical location of neurons in the cortex model. To avoid misunderstandings, the term
“cortex model” does not refer to the fMRI data space discussed later in this paper.
A common choice would be the ordering of the r;’s on a regular low-dimensional
grid (k € {2,3}). However, this is not mandatory (see e.g. [56]). By choosing the
metric of the cooperativity function a; according to the neuron positions r; in the
target space, we obtain Kohonen’s SOM algorithm [32], [33]. a; is then chosen as a
monotonically declining function of the distance to the ‘winner neuron’ r’(x(¢)) on
the cortex model. The winner neuron is determined according to (3). Thus, the co-
operativity function a;(x(t), W(t), k) can be written as a(r(j),r'(x(t)), o(t)), where
r(j) denotes the position of neuron j on the cortex model and o(¢) a distance in the
metric of the cortex model. Usual choices are Gaussian cooperativity functions

(r - r’(X(Qt)))z)

o(x (). ¥ x(0). o) = o (- E

()
or characteristic functions on a k-dimensional hypersphere around r'(x(t))
aj(r(j),r’(x(t)),a(t)) = X|e—r (x(1)]| <o (2)

{ Lo e =r'(x@) <ot
0 : [r—=r2'(x(2)]| > o(¥).

~—
—~~
[=2)
~—
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The update rule (1) then becomes

wi(t+1) = w;(t) + e(t) a; (x(4), r'(x(2)), o (1)) (x(2) — w; (1)) (7)

o(t) denotes a concrete choice of the cooperativity parameter x in (1). It is a
measure for the ‘range’ of the cooperativity function a;(r(j),r'(x(¢)),o(t)) on the
cortex model. It is usually updated according to some heuristic annealing scheme,
as is the learning parameter €(¢). A common strategy is an exponential decay, i.e.

0 (tmax)

a(t):o(0)< +10) )"’— t € [0, tmax]- 8)

and
€(tmax)

€(t) = €(0) ( (0) )m’ t €0, tmax]- (9)

In contrast to algorithms in which the cooperativity function is based on the metric of
the feature space like k-means type clustering or minimal free energy VQ, the SOM
algorithm has the interesting property of topology preservation, i.e. neighboring
points of the feature space are mapped onto neighboring neurons of the cortex
model. In many fields of data analysis, this allows for the construction of graphically
appealing 2D maps that represent the CVs in some topological order [32]. However,
this order may be misleading due to possible folding of the feature map (see e.g.
[43]) in cases where the data are located on manifolds with a dimension greater than
k, a common situation with biomedical time-series data (n > 2).

Recently, a generative topographic mapping (GTM) technique has been proposed
[9], [8] as a principled alternative to SOMs. Although conceptually motivated by
the SOM algorithm, this technique avoids several of its theoretical disadvantages,
e.g. the non-existence of an objective function [20] or the lack of a convergence proof.

If we do not use a mapping like (4) of the CVs onto a cortex model but apply a
metric of the feature space a; directly, e.g.

_ oxp(— B, (x())/2p)

Z 7
we obtain the cooperativity function for the soft clustering scheme proposed by
Rose, Gurewitz, and Fox [45].

Here, the ‘error’ E;(x(t)) = ||x(t) — w;(t)||* measures the distance between the
codebook vector w; and the data vector x. Z denotes a partition function given by

Z =Y exp(~E;(x)/20°), (11)

a; (x(t), W(t), k= p(t)) (10)

and p is the cooperativity parameter of the model. This so-called ‘fuzzy range’
p(t) defines a length scale in the feature space, not in a cortex model like o(t) in
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(5) or (6). Noting the analogy to statistical mechanics, p can be interpreted as
the temperature 7" in a multiparticle system employing T = 2p?. It is annealed
to repeatedly smaller values in the V(Q procedure, e.g. according to an annealing
scheme (8).

To avoid misunderstandings, equation (11) does not make the assumption that
all the feature vectors are represented by a single Gaussian probability distribu-
tion, but that they can be estimated in the sense of a Gaussian mixture model.
It can be shown that the partitions obtained by this algorithm fulfill the condi-
tions of a maximum likelihood estimation based on a set of univariate Gaussian
distributions that are constrained to identical width for each CV in each annealing
step. Of course, by skipping this restriction one may think of further increasing
the approximation quality achieved by Gaussian mixture models by multiplying the
number of model parameters, e.g. by introducing mixtures of multivariate Gaussian
distributions. A classical approach for this is the straight-forward maximum likeli-
hood estimation of Gaussian mixture models using arbitrary multivariate Gaussian
distributions (e.g. based on the well-known EM algorithm [11] mentioned above).
This concept suffers from stability problems with regard to singular solutions, as
has already been pointed out by [19]. It has been shown [31] that the clustering
algorithm based on the cooperativity function (10), in contrast, does not suffer from
such stability problems and is more robust against being captured in local minima of
the likelihood function. For a discussion of this tradeoff between model complexity,
estimation precision, and stability issues with regard to Gaussian mixture models,
we refer to the literature, e.g. [19], [11], [31].

The learning rule (1) with a; given by (10) describes a stochastic gradient descent
on the error function

F,(W) = (3 a;(x) (x = w;)*) + 2p”(3_ a;(x) In(a;(x))), (12)

J

which is a free energy in a mean-field approximation [13], [45]. Here, (.) denotes
the expectation value. The values of the cooperativity function a; are normalized

N

3 4, Wp) =1 (13)

=1

and can be interpreted as the assignment probabilities of a given feature vector x
to each of the CVs w;, j € {1,..., N} [45].

The CVs w; mark local centers of the multidimensional probability distribution
f(x). Thus, for the application to biomedical signal analysis, the CV w; is the
weighted average time-series of all the PTCs x” belonging to cluster 7 with respect
to a fuzzy tessellation of the feature space according to (10).

In contrast to SOMs, minimal free energy VQ
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(i) can be described as a stochastic gradient descent on an explicitly given energy
function (see (12)) [45],

(ii) preserves the probability density without distortion as discretization density,
i.e. the number of CVs, grows towards infinity [15], [16], and, most important
for practical applications,

(iii) allows for hierarchical data analysis on different scales of resolution with regard
to the metric of the feature space [14].

Furthermore, the procedure can be monitored by various control parameters like
the free energy, entropy, reconstruction error, etc. which enable easy detection of
cluster splitting. Properties of resulting optimal codebooks have been thoroughly
investigated [15] and allow for a self-control process of the VQ procedure with respect
to theoretically proven conservation laws [14].

Fig. 1 illustrates the application of hierarchical minimal free energy VQ clustering
to a simple two-dimensional toy example.

As the ‘fuzzy range’ p declines in the course of the annealing scenario, the VQ
procedure passes a sequence of cluster splitting phase transitions, until finally a
fine-grained tessellation of the feature space is obtained.

Tracing the repetitive cluster splitting through the whole VQ procedure leads
to a ‘genealogy’ of cluster centers, i.e. a resemblance tree of codebook vectors. At
the same time, the scope of clustering resolution can be adapted according to the
observer’s needs.

3 Methods

3.1 Imaging Protocol
Functional MRI

Functional imaging was performed in 6 healthy subjects (3 male, 3 female, age range
20 — 37years) on a 1.5 T system (Signa™, General Electrics, Milwaukee) using a
gradient echo echoplanar imaging (EPI) sequence. In five subjects, five slices with
100 images (TR/TE = 3000/60msec) were acquired with five periods of rest and
five photic stimulation periods starting with rest. Stimulation and rest periods
comprised 10 repetitions each, i.e. 30s. In one subject eight slices with 64 images
(TR/TE= 4000/66 msec) were obtained starting with a period of rest lasting 10
repetitions (i.e. 40s) followed by three periods of stimulation alternating with three
periods of rest comprising 9 repetitions each, i.e. 36 s. Resolution was 3 x 3 x 4 mm.
The slices were oriented parallel to the calcarine fissure. A respective pilot scan
including the acquired slice positions is shown in fig. 2. The data analysis results in
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this paper are plotted for the central slice in the 100 scan experiments and for slice
#4 counted from top to bottom in the 64 scan experiment. Photic stimulation was
performed using an 8 Hz alternating checkerboard stimulus with a central fixation
point and a dark background with a central fixation point during the control periods.
The first scan was discarded for remaining saturation effects. Motion artifacts were
compensated by automatic image alignment (AIR 3.08, [57]).

Dynamic Contrast-Enhanced Cerebral Perfusion MRI

Clustering results are presented for dynamic cerebral perfusion MRI data sets from
two patients: (i) One man aged 37 years without focal neurological deficit. He was
referred to MRI to rule out perfusion abnormality. (ii) One female patient aged 66
years with subacute stroke (3 days elapsed since onset of neurological symptoms)
who underwent MRI examination as a routine clinical diagnostic procedure. Dy-
namic susceptibility contrast-enhanced perfusion weighted MRI was performed on
a 1.5 T system (Magnetom Vision, Siemens, Erlangen, Germany) using a standard
circularly polarized head coil for radio frequency transmission and detection. First,
fluid-attenuated inversion recovery, T2-weighted spin echo, and diffusion weighted
MRI sequences were obtained in transversal slice orientation enabling initial local-
ization and evaluation of the cerebrovascular insult in the patients with stroke. Then
dynamic contrast-enhanced perfusion weighted MRI was performed using a 2D gra-
dient echo echoplanar imaging (EPI) sequence employing 10 transversal slices with
a matrix size of 128 x 128 pixels, pixel size 1.88 x 1.88 mm, and a slice thickness of
3.0mm (TR = 0.8ms, TE = 0.54ms, FA = 90°). The dynamic study consisted of
38 scans with an interval of 1.5s. The perfusion sequence and an antecubital vein
bolus injection (injection flow 3ml/s) of gadopentetate dimeglumine (0.15 mmol /kg
body weight, Magnevist™, Schering, Berlin, Germany) were started simultaneously
in order to obtain several (more than six) scans before cerebral first pass of the
contrast agent.

Dynamic Contrast-Enhanced MRI Mammography

Clustering results are presented for dynamic contrast-enhanced MRI mammography
in a 48 year-old woman with histologically confirmed breast cancer in the upper
medial quadrant of the left breast. These data were acquired according to an MRI
protocol to investigate focal breast lesions classified as indeterminate from clinical
findings and conventional X-ray mammography. MRI was performed with a 1.5 T
system (Magnetom Vision, Siemens, Erlangen, Germany) equipped with a dedicated
surface coil to enable simultaneous imaging of both breasts. The patients were placed
in a prone position. First, transversal images were acquired with a STIR (short TI
inversion recovery) sequence (TR = 5600 ms, TE = 60 ms, FA = 90°, TT = 150 ms,
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matrix size 256 x 256 pixels, slice thickness 4 mm). Then a dynamic T1 weighted
gradient echo sequence (3D fast low angle shot sequence) was performed (TR = 12
ms, TE = 5 ms, FA = 25°) in transversal slice orientation with a matrix size of 256 x
256 pixels and an effective slice thickness of 4 mm. The dynamic study consisted
of 6 measurements with an interval of 110 s. The first frame was acquired before
injection of paramagnetic contrast agent (gadopentetate dimeglumine (0.1 mmol/kg
body weight, Magnevist™, Schering, Berlin, Germany), immediately followed by
the other 5 measurements. The initial localization of suspicious breast lesions was
performed by computing difference images, i.e. subtracting the image data of the
first from the fourth acquisition.

3.2 Data Analysis

In an initial presegmentation step, the surrounding parts of the data set were ex-
cluded by a mask. Although semiautomatic or fully automatic presegmentation
procedures could be employed, we performed interactive manual contour tracing by
a human observer for all three applications.

Functional MRI

For the analysis of fMRI data, the raw gray level time-series were average-corrected,
i.e. the individual mean gray-level for all scans was subtracted for each pixel. Sub-
sequently, the resulting time-series were normalized, i.e. they were scaled for a stan-
dard deviation of one. The resulting average-corrected, normalized PTCs x served
as input for the VQ procedure. Average-corrected normalized PTCs were clustered
employing 36 CVs, i.e. a maximal number of 36 separate clusters at the end of the
hierarchical VQ procedure. In addition, exploratory analyses were performed using
different numbers of CVs (16 — 144).

Dynamic Contrast-Enhanced Cerebral Perfusion MRI

The raw gray level time-series S(7), 7 € {1,...,38} was transformed into a PTC
of relative signal reduction z(7) for each voxel by normalizing with the pre-contrast
gray level. The first two scans were discarded from analysis for remaining saturation
effects.

Clustering of dynamic perfusion MRI time-series z(7) was performed employing
16 CVs. Cluster-specific regional cerebral blood flow (rCBF), regional cerebral blood
volume (rCBV), and mean transit time (MTT) were calculated according to the
literature [58], [2]. For this purpose, the CVs were transformed into estimates for
cluster-specific concentration-time curves (CTCs) according to [46].
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Dynamic Contrast-Enhanced MRI Mammography

The raw gray level time-series S(7), 7 € {1,...,6} was transformed into a PTC of
relative signal change z(7) for each voxel by normalizing with the gray-level of the
pre-contrast scan at 7 = 1. The PTCs x were clustered using 9 CVs.

Neural Network Clustering Procedure

Hierarchical neural network clustering of the preprocessed PTCs x was performed by
minimal free energy VQ employing a batch Expectation Maximization (EM) version
of minimal free energy VQ [12], [55] in which, in contrast to (1), the computation of
CVs w; (M-step) and assignment probabilities a; (E-step) is decoupled and iterated
until convergence at each annealing step characterized by a given ‘temperature’
T = 2p?. The batch EM version of our clustering procedure and its relation to the
sequential VQ learning rule (1) is explained in the following: Let (f)x denote the
expectation value of a random variable f, i.e.

fx = [ 1(x)p(x)dx (14)
X
with probability density p(x) and let

(1) = [ £60 p(x]j)dx (15)

X

denote the class-specific expectation values, then (f); can be computed according
to Bayes rule

MMﬁ=2@%%BZ (16)
e

if we interpret the activations a;(x) as the a posteriori probabilities p(j|x) (see (13))
for the assignment of feature vector x to the hidden layer neuron j with

/p]ﬂxdx—/p p(jx)dx = (a;(x))x (18)

as the average activation (so-called “load”) of neuron j. The stationarity condition

(a;(x) (x — w;))x =0 (19)



Preprint of: A. Wismiiller et al., Int J Computer Vision 46(2):103-128, 2002. 12

of the learning rule (1) yields

{a)x),
7T )y

where the CVs w, represent the class-specific averages (x); of the data distribution
according to (17).

Equation (20) represents a batch version of minimal free energy VQ. The right
side of equation (20) is influenced via the activations a;(x) by the CV positions w;.
The procedure is iterated until some convergence threshold is reached for the w; or
a maximum number of iterations (50 in our implementation) has been performed.
A learning parameter e according to the sequential update rule (1) is not needed
in the batch version of the algorithm. For a detailed explanation with regard to
the theoretical relation between clustering according to batch algorithms such as
equation (20) and maximum likelihood estimation by EM, we refer to [28].

Clustering was performed employing 128 annealing steps corresponding to ap-
prox. 8 x 10> EM iterations within an exponential annealing schedule for p according
to (8). The initial value for p was chosen 1.2 \!/2 where ),,. denotes the largest
eigenvalue of a preceding PCA. The final value for p and the annealing strategy were
determined in an exploratory manner guided by minimization of the hard assignment
criterion function

(20)

N

E=3 > lx=wl* (21)
Jj=1x€X;

where X; C X is the subset of data vectors attributed to cluster j according to (2).

However, we did not find relevant differences of clustering results (as quantified by

(21)) when choosing among different annealing strategies. Codebook control param-

eters like load balance deviation, center of mass shift, entropy, and reconstruction

error were computed for each annealing step [12].

Besides minimal free energy V(Q, we performed alternative neural network clus-
tering procedures on our data: SOM clustering [34] and k-means type (fuzzy c-
means) VQ [7]. All the learning parameters and the respective parameter update
strategies were chosen in accordance with the suggestions of the quoted literature,
the minimization of the criterion function (21) serving as guideline for parameter
selection.

Image processing routines were realized using IDL software, whereas computer
simulations of neural networks were implemented as C programs.

3.3 Evaluation

The clustering results were evaluated by (i) assessment of cluster assignment maps,
i. e. cluster membership maps according to a minimal distance criterion in the metric
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of the PTC feature space, and (ii) the analysis of corresponding CV time courses.
For fMRI data, we performed comparative quantitative evaluation of the results
obtained by different clustering algorithms using the ‘hard assignment’ criterion
function (21). In addition, we compared the clustering results to PCA performed
on the same data.

4 Results

4.1 Functional MRI

Clustering results for a 100 scan visual stimulation experiment are presented in figs.
3, 4, and 5. For illustration, figs. 6a and b show a respective cross-correlation map
along with a single raw EPI scan from the fMRI image time-series. Fig. 3 shows the
‘hard’ cluster assignment maps. In these maps, all the pixels are highlighted that
belong to a specific cluster. The decision on assigning a pixel v characterized by
the PTC x, = (z,(1)),7 € {1,...,n} to a specific cluster j is based on a minimal
distance criterion in the n-dimensional time-series feature space, i.e. v is assigned to
cluster j, if the distance ||x, — w,|| is minimal, where w; denotes the CV belonging
to cluster j. Each CV shown in fig. 5 can be interpreted as the cluster-specific
weighted centroid of all PTCs. Figs. 3 and 5 represent cluster assignment maps
and codebook vectors for the VQ step with minimal codebook reconstruction error
corresponding to a cooperativity parameter p = 1.24.

Fig. 4 provides the corresponding ‘soft’ cluster assignment maps which visualize
the clustering results of the same data set as fig. 3, but here the soft assignments
aj(x) according to equation (10) are gray-scaled on a continuous scale. This figure
has been included to provide a visual comparison to the results obtained by plain
PCA in fig. 7.

Note the apparent similarity of the CVs #1, #2, and #3 in fig. 5 compared with
the stimulus function shown at the bottom of each CV plot. For these clusters, the
corresponding cluster assignment maps in fig. 3 can be attributed to activation of
the visual cortex.

Fig. 9 shows a bifurcation diagram of repetitive cluster splitting within the de-
terministic annealing procedure. Cluster assignment maps in figs. 9b, e, f, i, and j
are ordered according to the branch structure of figs. 9a, ¢, d, g, and h.

Fig. 9 covers three VQ steps of the deterministic annealing procedure. Fig.
9a presents one of 15 cluster centers present at the observed stage of VQ with a
cooperativity parameter p = 1.81. Note the apparent similarity compared with the
stimulus (fig. 5). Fig. 9b shows the corresponding hard cluster assignment map,
i.e. all the pixels belonging to this cluster center according to a minimal distance
criterion in the metric of the PTC feature space. The highlighted regions can be
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attributed to the response of the visual cortex. They clearly correspond to the
activated regions in the cross-correlation image fig. 6a.

In the subsequent V(Q step a phase transition occurs at p = 1.79, and the cluster
of fig. 9a splits up into two descendant clusters representing smaller regions of the
visual cortex with different pixel dynamics. They are presented in figs. 9c and d, the
corresponding hard cluster assignment maps in figs. 9e and f. Note that the sum of
the activated areas in figs. 9e and f is greater than the area of the cluster in fig. 9b.
This is based on a reduction in local reconstruction error due to the fact that the
new codebook structure fits the underlying local probability density more closely.
Thus, the descendant clusters can take over pixels which were formerly attributed to
adjacent CVs. The two descendant clusters differ with respect to signal baseline drift
and some subtle details of signal dynamics. At a later stage of the VQ procedure,
another phase transition occurs at p = 1.64, and the cluster of fig. 9d again splits
up into two descendant clusters represented by figs. 9g and h. The corresponding
hard cluster assignment maps are presented in figs. 91 and j.

These results show that minimal free energy VQ can explore fMRI time-series at
different scales of resolution with regard to the metric of the feature space. This is
not the result of some heuristic cluster splitting or merging procedure that requires
meta-knowledge of a human observer about ‘relevant’ cluster similarity, but evolves
naturally in a self-organized manner from a solely data-driven approach (see dis-
cussion section). Thus, the cluster structure at smaller values of the cooperativity
parameter p provides insight into the fine-grained structure of the fMRI activation
patterns, representing a higher clustering resolution with respect to subtle differ-
ences of signal dynamics.

In the light of these observations, we want to emphasize that the self-organized
hierarchical phase transitions represented by the bifurcation diagram and resulting
cluster distances are determined by the metric of the feature space, which does not
necessarily imply neurobiological relatedness. For the cluster splitting observation
of fig. 9, clusters representing activation are derived from a common branch of the
bifurcation diagram. For the cluster assignment maps in fig. 3, cluster 21 may be
assigned to a co-activation of the frontal eye fields induced by the stimulus onset.
However, it cannot be derived from a common branch with regard to clusters 1, 2
and 3. It is negatively correlated to the stimulus function. Although there may be
some kind of physiological relatedness between cluster 21 and the stimulus (and,
thus, clusters 1, 2, and 3), this relatedness is not expressed by the metric of the
feature space, and, thus, cannot be displayed by clustering procedures based on this
metric. This observation holds for all clustering procedures currently used for fMRI
analysis, such as SOMs and fuzzy c-means VQ, and may be considered as a general
weakness of unsupervised fMRI data processing. However, a subset of physiological
interdependencies that can be expressed by the metric of the feature space can be
successfully detected by clustering approaches, such as demonstrated for the clusters
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representing activation in fig. 3.

As an additional observation, clustering is able to identify data sets that are
highly indicative of artifacts, e.g. ventricular pulsation or through plane motion. As
an example, figs. 10a and 10b present a respective single CV and the correspond-
ing assignment map gained from a 64 scan visual stimulation experiment. The CV
reflects a considerable drift over time, and the respective pixels are distributed at
the edge of the data set. Thus, clustering results can be used for the detection of
artifacts, which sometimes may focus the observer’s attention to potential improve-
ments of experimental conditions, e.g. in order to avoid motion artifacts. These
artifacts could hardly be detected by classical supervised methods of fMRI time-
series analysis.

We analyzed the anatomical features of the 36 clusters of pixels in all six subjects
separately. In all subjects, our method resulted in identification of at least two
(up to four) pixel clusters confined to the expected activation areas in the visual
cortex. The PTCs of the corresponding codebook vectors correlated well to the
stimulation protocol (cross-correlation between 0.65 and 0.93). In addition, in all
subjects anatomically coherent clusters of pixels were regularly seen in the frontal
eye fields, in three subjects in the precuneus, and in three subjects also in the
temporal areas. These clusters frequently showed negative cross-correlation for the
PTCs (up to —0.43) such as cluster #21 in figs. 3 and 5. The ventricles were also
represented separately in all subjects by up to three clusters with complex-shaped
CVs such as clusters #6 and #8 in figs. 3 and 5.

For comparison, the results of a principal component analysis on these data are
presented in figs. 7 and 8.

Computation times for clustering of these fMRI data by minimal free energy
VQ, fuzzy c-means VQ, and SOMs using different numbers of codebook vectors on
a Sun Ultrab workstation with an UltraSPARC-IIi 333 MHz CPU can be found in
table 6. Computation time for plain PCA was 3 s. Our computation times for fuzzy
c-means VQ are much lower than those observed on a comparable data set in a
recently published paper on fMRI clustering [10], where fuzzy c-means VQ using 25
CVs required 61191 s.

A comparative quantitative evaluation of different unsupervised learning tech-
niques using the ‘hard assignment’ criterion function (21) for this visual stimulation
fMRI experiment is presented in fig. 11. The criterion function has been computed
for quality assessment of minimal free energy VQ, SOMs, and fuzzy c-means VQ
using different numbers of codebook vectors for each method along with principal
component analysis using different numbers of components in the order of descend-
ing eigenvalues.
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4.2 Dynamic Contrast-Enhanced Cerebral Perfusion MRI

Clustering results for a 38 scan dynamic contrast-enhanced MRI perfusion study in
a patient with a large stroke in the supply area of the left middle cerebral artery are
presented in figs. 12 and 13. After discarding the first two scans, a relative signal
reduction time-series z(7), 7 € {1,...,n},n = 36 can be computed for each voxel.
Clustering these PTCs identifies groups of pixels with similar signal dynamics. Fig.
12 shows the ‘cluster assignment maps’ overlaid onto an EPI scan of the perfusion
sequence. As explained for the fMRI data in fig. 3, all the pixels are highlighted in
these maps that belong to a specific cluster according to a minimal distance criterion
in the n-dimensional time-series feature space.

Fig. 13 shows the prototypical cluster-specific concentration-time curves (CTCs)
computed from the CVs belonging to the clusters of fig. 12. The region of the
cerebrovascular insult in the supply region of the left middle cerebral artery is clearly
depicted by cluster #15 and #16. Note the small corresponding CTC amplitude,
i.e. the small cluster-specific rCBV and rCBF. Cluster #14 contains peripheral and
adjacent regions.

The clustering results for the control subject without evidence of cerebrovascular
disease were similar to those of the non-affected hemisphere in fig. 12. Clustering
could differentiate between larger vessels located in the cerebral sulci and parenchy-
mal vascularization. In contrast to the results of the stroke patient data in figs. 12
and 13, there was no evidence of side-asymmetry with regard to both the temporal
pattern and the amplitude of brain perfusion. This was expressed by the observation
that, in contrast to fig. 12, each cluster contained pixels in roughly symmetrical re-
gions of both hemispheres. Furthermore, there was no cluster indicating a localized
perfusion deficit.

4.3 Dynamic Contrast-Enhanced MRI Mammography

Clustering results for a 6 scan dynamic contrast-enhanced MRI mammography study
in a patient with breast cancer in the upper medial quadrant of the left breast are
presented in figs. 14 and 15 for VQ employing 9 CVs. The figures are analogous to
figs. 3 and 5 for functional MRI and figs. 12 and 13 for dynamic contrast-enhanced
perfusion MRI. They show clusters of pixels and CVs for minimal free energy VQ of
MRI mammography data covering a supramamillar transversal slice of the left breast
containing a suspicious lesion that has been proven to be malignant by subsequent
histological examination.

The procedure is able to segment the lesion from the surrounding breast tissue
as can be seen from clusters #0 and #1 in fig. 14. Note the rapid and strong
contrast agent uptake followed by subsequent plateau and washout phases in the
round central region of the lesion as indicated by the corresponding CV of cluster



Preprint of: A. Wismiiller et al., Int J Computer Vision 46(2):103-128, 2002. 17

#0 in fig. 15. Furthermore, clustering results enable a subclassification within this
lesion with regard to regions characterized by different MRI signal time-courses:
The central cluster #0 is surrounded by the peripheral circular cluster #1 which
primarily can be separated from both the central region and the surrounding tissue
by the amplitude of its contrast agent uptake ranging between CV #0 and all the
other CVs. Furthermore, an additional, even more peripheral ringlike structure can
be detected by careful observation of cluster #2.

5 Discussion

In this paper, we have presented the concept of self-organized neural network clus-
tering as a flexible and powerful computer vision strategy for data analysis and visu-
alization in the field of medical image time-series analysis. Deterministic annealing
by the minimal free energy V() algorithm can serve as a useful method to unveil
the properties of medical image sequences by gradually resolving the fine-grained
structure of the data set in an unsupervised repetitive cluster splitting process. It
has been shown to be useful for the hierarchical subclassification of local tissue
properties with respect to regions of different signal dynamics and/or amplitude.

Although we found that non-hierarchical neural network clustering methods like
SOMs or k-means type clustering can be useful for medical image time-series data
analysis as well, we want to point out some potential advantages of the deterministic
annealing procedure based on minimal free energy VQ:

(i) Deterministic annealing, in contrast to SOMs and k-means type clustering,
is a hierarchical method that allows data exploration on different scales of
clustering resolution by gradually increasing the number of cluster centers in a
self-organized, solely data-driven procedure. This may sometimes unveil some
insight for exploring the coarse-grained structure of the data set.

(ii) As deterministic annealing attempts to track the global minimum of the free
energy landscape through different stages of cost function complexity, the pro-
cedure seems to be more resistant against being trapped in local minima in
contrast to other clustering techniques, see below. The resulting increase of
result quality can be objectively determined by computing respective quanti-
tative measures such as the clustering criterion function (21).

SOMs provide the advantage of ‘topology preservation’ that allows the construc-
tion of graphically appealing 2D maps. As pointed out in the theory section, this
property may be misleading due to folding of the feature map if the data are located
on a manifold that exceeds the dimensionality of the mapping grid (e. g. [43]).
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At what stage should the clustering procedure be stopped? Deterministic an-
nealing can be continued until cluster degeneracy has been removed completely, i.e.
each CV represents a different cluster. In this stage, the codebook reconstruction
error approaches a minimum at p := py which can serve as a stop criterion. How-
ever, clustering can be stopped at any earlier stage, i.e. p > py, if one is interested
in large-scale differences of signal dynamics. The ‘high-level’ clusters in figs. 9a — f
present examples for this.

How many CVs should be used for clustering? If the number of CVs is chosen
too small, interesting phenomena involving only a small subset of pixels cannot
be detected in a suitable clustering resolution. If it is chosen too large, however,
large-scale phenomena are represented by a great number of CVs which have to
be recollected by heuristic merging procedures to form ‘superclusters’ of several
CVs coding for similar PTCs (e.g. [22]), or, for deterministic annealing, one has to
trace higher levels of the splitting hierarchy. As can be seen from fig. 11, a simple
clustering criterion function cannot be used for a priori defining a reasonable number
of CVs without knowledge of the data or the respective goals of data analysis. There
have been various attempts in the literature to find and evaluate solutions to this
problem, however, it has also been shown that their performance is data-dependent
and frequently poor. For a detailed discussion of this issue, we refer to [38].

Although we conjecture that a data-driven hierarchical procedure can be use-
ful to data analysis and visualization on different scales of clustering resolution in
our applications, we do not claim that it is always possible to attribute a specific
neurophysiological interpretation to each hierarchy level. However, there may be sit-
uations where hierarchical clustering can provide a useful subclassification of brain
regions that may be relevant in terms of neurophysiological or neuroanatomical in-
terpretation. As an example for the potential of our method, we refer to previously
published data where the visual cortex identified by a higher level in hierarchical
clustering of non-normalized photic stimulation data could be subdivided into two
clusters representing central and peripheral extrastriatal areas of the visual cor-
tex [52].

The question arises, how the data drives the splitting process, i.e. what in the
data provokes the phase transition leading to a split. For this purpose, deterministic
annealing can be defined as an optimization on a family of smoothed cost functions,
i.e. the free energy (12) parameterized by the cooperativity parameter p. In the
analogy to statistical mechanics, the first term in (12) can be interpreted as the
so-called “internal energy” in a canonic ensemble, and the second term defines the
entropic contribution. Note that the first term resembles a conventional clustering
criterion function (“within-class inertia”) such as (21), although, in contrast to (21),
soft assignments are used according to the “fuzzy” character of the procedure.

The cooperativity parameter determines the amount of smoothing. For high
values of p, the clustering cost function is smoothed to such a degree that only
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one global minimum remains, which is easily determined by gradient descent or an
EM approach. For lower values of p, the structure of the original cost function is
increasingly reflected by the free energy. For p — 0, the entropic contribution finally
vanishes, and the free energy approaches the exact form of the original clustering cost
function. Deterministic annealing starts by determining the minimum of the free
energy at high values of p and attempts to track the minimum for lower values of p,
until the minimum of the free energy at p — 0 coincides with the minimum of the
internal energy, i.e. the original clustering cost function. We do not claim that the
algorithm always reaches a global minimum. However, according to the literature,
e.g. [28], [29], deterministic annealing frequently finds better local minima.

Cluster splitting occurs, when a minimum of the free energy is transformed into
a saddle point within the annealing process of the cooperativity parameter p, which
gradually unveils the original complexity of the clustering cost function. For a toy
example with explicit computation of the free energy landscape and its respective
contributions, we refer to [12].

However, even if one may deny any advantage of self-organized hierarchical clus-
tering, e.g. by criticizing the relevance of the resulting multi-resolution hierarchy
with regard to its physiological meaning in specific examples, the performance of
minimal free energy VQ based on the comparative evaluation of the clustering crite-
rion function (21) in fig. 11 nevertheless justifies our approach. We conjecture that
the result quality is based on the property of deterministic annealing to be more re-
sistant against being trapped in local minima in comparison to direct minimization
of a clustering cost function. Toy examples supporting this conjecture can be found
in [12] as well.

Although the computation of the criterion function (21) in fig. 11 may enable
a quantitative comparative evaluation of conceptually different data decomposition
techniques, it may be criticized that it does not take into account the specific charac-
teristics of each algorithm with regard to ‘soft’ data partitioning which is an inherent
property of both PCA and the clustering techniques presented in our paper. In this
context, one should not overemphasize the poor result for PCA in the comparison
of fig. 11. It corresponds to our experience that PCA can nevertheless serve as a
valuable tool for unsupervised fMRI analysis, picking up stimulus-related activation
or motion artifacts as well.

Careful consideration should be made concerning the metric implied by appro-
priate preprocessing of the data before clustering [49]. The concrete choice depends
on both the observer’s focus of interest and the specific clinical application.

Should one perform normalization of PTCs before clustering? The discussion
of this issue resembles the problem of choosing between the computation of cross-
correlation or cross-covariance images in classical supervised fMRI analysis (e. g. [3]).
The concrete choice depends on the observer’s focus of interest. If cluster analysis is
to be performed with respect to signal dynamics rather than amplitude, clustering
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should be preceded by time-series normalization. Normalization, however, leads to
amplification of noise in low-amplitude PTCs. Furthermore, PTC amplitude can
provide useful information that may be valuable for the physiological or clinical
interpretation of image time-series data depending on the focus of data analysis.
The decision should be reflected in the light of the specific biological and clinical
application.

For the analysis of contrast-enhanced studies, PTC normalization usually does
not make sense, as the amplitude information is crucial for the clinical interpretation
of the observed time-series data which would be discarded by normalization. In
the analysis of dynamic contrast-enhanced cerebral perfusion MRI, for example,
locally reduced cerebral perfusion of the infarcted region can only be documented
by avoiding PTC normalization (see fig. 13), although there may be interesting side
asymmetries with regard to temporal signal dynamics as well. The same holds for
dynamic MRI mammography: Here, the initial identification of suspicious tissue
lesions is primarily based on the high contrast-agent uptake amplitude, whereas the
temporal signal dynamics may provide additional information for subclassification
of different regions within this lesion, see fig. 15.

In this context one may speculate about the validity of spatial coherence mea-
sures among voxels assigned to the same cluster as a criterion for selecting “in-
teresting” clusters, where “spatial” can refer to both the geometrical 3D space of
pixel coordinates and the metric of the high-dimensional feature space of fMRI time-
series. In so far as the geometrical feature space of brain coordinates is concerned,
considerable effort has been made in the past in order to correctly assess significant
activation in fMRI by use of cluster-size thresholds. For a detailed discussion of this
issue, we refer to the relevant literature, e.g. [24].

An additional approach to define a cluster validity measure by exploiting cluster
coherence based on the metric of the high-dimensional feature space of fMRI time-
series can be obtained by observing the norm of the resulting CVs, when normalized
PTCs are used as input for the clustering procedure. As can be shown, this measure
reflects changes in cluster-specific covariance in the feature space. This effect may
be used for the selection of clusters representing ‘interesting’ features with regard to
the interpretation of physiological phenomena or experimental conditions, such as
motion artifacts. However, we want to emphasize that, like in conventional super-
vised MRI time-series data analysis, the physiological or clinical interpretation of
clustering results is still in the responsibility of the neuroradiologist or the biomedi-
cal researcher. Neural network clustering can only provide computer-aided support
to appropriate data exploration in order to assist, not to replace this interpretation.
In particular, we want to emphasize that we would consider it ‘dangerous’ to solely
rely on cluster validity indices in order to decide about the neurobiological relevance
of clustering results.

In summary, we obtain a complex picture of various pros and cons for choosing
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among specific clustering algorithms and preprocessing strategies. Careful consider-
ation should be made with respect to all of these issues in order to extract maximal
information from the data according to the specific clinical focus of the examination.
This can only be achieved by close cooperation between computer vision scientists
and biomedical researchers. The clinical applications presented in this paper may
serve as an example for this endeavour aiming at interdisciplinary communication.

6 Conclusion

Our study shows that deterministic annealing by the minimal free energy VQ is a
useful strategy for unsupervised analysis of medical image time-series data. It re-
alizes a hierarchical unsupervised learning procedure unveiling the structure of the
data set with gradually increasing clustering resolution. Repetitive cluster splitting
can be analyzed by back-tracking a bifurcation diagram which allows for convenient
ordering of clusters according to their underlying multidimensional probability dis-
tribution. Thus, the properties of the data set can be explored in a natural manner.

In particular, the presented neural network clustering methods could identify
activated brain regions in functional MRI studies of visual stimulation experiments.
They unveiled regional abnormalities of brain perfusion characterized by differences
of signal amplitude and dynamics in contrast-enhanced cerebral perfusion MRI.
Here, they could provide a rough segmentation with regard to vessel size and identify
regions of perfusion deficit in patients with stroke. Furthermore, dynamic MRI
mammography data could be analyzed concerning the identification and regional
subclassification of pathological breast tissue lesions.

Although we conjecture from our results that neural network clustering can pro-
vide a useful extension of conventional methods for medical image time-series analy-
sis, large controlled clinical trials are needed to establish the validity of our method
and to finally evaluate its contribution to clinical decision making.
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Figure 1: Toy example for hierarchical vector quantization by deterministic an-
nealing. The feature space is represented by a plane with several Gaussian distri-
butions. By gradually decreasing the cooperativity parameter p in (a) — (f), the
initially degenerate clusters increasingly split up into multiple descendant clusters,
thus approaching a fine-grained tessellation of the feature space.
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Figure 2: Pilot scan for the visual stimulation fMRI experiment presented in figs. 3
and 5. The data analysis results are plotted for the central slice.
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Figure 3: Hard cluster assignment maps for cluster analysis of a visual stimulation
fMRI experiment. The figure shows the vector quantization step with minimal re-
construction error. Results are obtained by minimal free energy vector quantization
using 36 codebook vectors.
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Figure 4: Soft cluster assignment map corresponding to fig. 3.
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Figure 5

in fig. 3.

stimulus
plot.

: Codebook vectors for vector quantization of the fMRI data set presented
ccValue denotes the cross-correlation of each codebook vector with the
function. The time-course of the stimulus is shown at the bottom of each



Preprint of: A. Wismiiller et al., Int J Computer Vision 46(2):103-128, 2002. 32

(b)

Figure 6: (a) Cross-correlation image. (b) EPI image.
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Figure 7: Coefficient maps for principal component analysis of the visual stimulation
fMRI experiment presented in figs. 3 and 5. The figure shows the coefficient maps
for the components with the 36 largest eigenvalues in descending order.
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Figure 8: Eigenvectors for principal component analysis of the visual stimulation
fMRI experiment presented in figs. 3 and 5. The figure shows the eigenvectors
for the components with the 36 largest eigenvalues in descending order. ccValue
denotes the cross-correlation of each eigenvector with the stimulus function. The
time-course of the stimulus is shown at the bottom of each plot.
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Figure 9: Hierarchical clustering tree demonstrating cluster separation during de-
terministic annealing by minimal free energy VQ. (a) Cluster center before phase
transition, i.e. cluster separation. (b) Corresponding cluster of pixels before phase
transition. (c,d) Cluster centers after phase transition. (e,f) Corresponding clusters
of pixels after phase transition. The cluster center (d) is split again within a second
phase transition into the clusters (g,h). (i,j) Corresponding pixel clusters after the
second phase transition. The three lines of the figure represent the status of the VQ
procedure at gradually declining cooperativity parameter p with p = 1.81 for (a,b)
p = 1.79 for (c)—(f), and p = 1.64 for (g)—(j).
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Figure 10: Cluster assignment map and respective codebook vector representing a
cluster that is highly indicative of a through-plane motion artifact gained from a
64 scan visual stimulation experiment. (a) Cluster assignment map, (b) codebook
vector.
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Figure 11: Comparative quantitative evaluation of the different unsupervised learn-
ing techniques using the ‘hard assignment’ criterion function (21) for the visual
stimulation fMRI data presented in figs. 3 and 5. The criterion function has been
computed for quality assessment of minimal free energy VQ, self-organizing maps,
and fuzzy c-means V(Q using different numbers of codebook vectors for each method
along with principal component analysis using different numbers of components in
the order of descending eigenvalues. Note the quadratic scaling of the abscissae.
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| Algorithm [ 16 CVs | 36 CVs | 100 CVs |
Minimal free energy VQ | 3502 8222 18051
Fuzzy c-means VQ 1654 4392 11260
Self-organizing maps 65 115 175

38

Table 1: Computation times in seconds for clustering of fMRI data from a 100 scan
visual stimulation experiment by minimal free energy VQ, fuzzy c-means V(Q, and
self-organizing maps using different numbers of codebook vectors on a Sun Ultrab
workstation with an UltraSPARC-IIi 333 MHz CPU. Computation time for principal

component analysis is 3 s.
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Figure 12: Cluster assignment maps for minimal free energy vector quantization of
a dynamic perfusion MRI study in a patient with a large stroke in the supply region
of the left middle cerebral artery.
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Figure 13: Cluster-specific concentration-time curves for minimal free energy vector
quantization of a dynamic perfusion MRI study in a patient with a large stroke in
the supply region of the left middle cerebral artery. Cluster numbers correspond to
fig. 12. MTT values are indicated as multiples of the scan interval (1.5 s), rCBV
values are normalized w.r.t. the maximal value (cluster #1).
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Figure 14: Cluster assignment maps for minimal free energy vector quantization
of a dynamic MRI mammography study in a patient with histologically confirmed
breast cancer in the upper medial quadrant of the left breast.
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Figure 15: Codebook vectors for minimal free energy vector quantization of a dy-
namic MRI mammography study in a patient with histologically confirmed breast
cancer in the upper medial quadrant of the left breast. Cluster numbers correspond
to fig. 14.



